
ORIGINAL INVESTIGATION Open Access

GLUT4 content decreases along with insulin
resistance and high levels of inflammatory
markers in rats with metabolic syndrome
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Abstract

Background: Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content
in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation,
characteristics of the metabolic syndrome, in an experimental model.

Methods: Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS)
during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels,
C-reactive protein (CRP), interleukin 6 (IL-6), TNF-α and adiponectin were evaluated. GLUT4 protein was analysed in
the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo)
months of age.

Results: MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo:
p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-α were higher (p<0.001, all
comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 ± 2, H: 42 ± 2, C: 45 ± 2
pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart:
54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%).

Conclusions: MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4
content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
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Background
Metabolic syndrome is a highly prevalent condition [1]
and a determinant of increased cardiovascular risk [2]
and type 2 diabetes [3]. Insulin resistance is the key factor
that leads to several of the abnormalities associated with
the syndrome [4]. The link between insulin resistance and
metabolic syndrome was suggested to be inflammation
[5], which is the most widely accepted hypothesis for its
development [5-9]. Besides, hypertension is related to

insulin resistance [4], a feature that can be genetically
induced [10,11].
GLUT4 is the insulin-sensitive glucose transporter

which main role is to provide the insulin-stimulated glu-
cose uptake by adipose tissue, skeletal muscle and the
heart, tissues that specifically express this protein [12]. It
has been extensively reported that transgenic mice lack-
ing or overexpressing GLUT4 respectively, decrease or
increase whole-body insulin sensitivity [13], pointing out
its role in the maintenance of glucose homeostasis. In
obesity, the reduction of this transporter gene expression
is directly related to the development of insulin resist-
ance [14].
Inflammatory cytokines produced by the adipose tis-

sue, such as TNF-α (tumor necrosis factor-α) and
interleukin-6 (IL-6) have been related to reduce GLUT4
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expression [8,9], consequently lowering glucose uptake
by muscle, and participating on the compensatory hyper-
insulinemia [7,15,16]. Administration of monosodium
glutamate (MSG) to rats [17] or mice [18] is a well-
known animal model of obesity. Obesity development in
adult rodents induced by neonatal injection of MSG was
first proposed by Nemeroff and cols. [19]. This treat-
ment induces neuroendocrine dysfunctions as a conse-
quence of lesion in the arcuate nucleus of the
hypothalamus, which compromises dopaminergic and
cholinergic tubero-infudibular systems [20,21]. The
neurotoxic effect of MSG is restricted to the neonatal
period, because of the immature blood–brain barrier
[22], and seems to be dose-dependent [23,24]. Hypopha-
gia is usually observed [24,25], and obesity derives from
a lower metabolic rate [26], related to decreased thermo-
genesis [27], attributed to low sympathetic nervous sys-
tem activity of brow adipose tissue [28]. Endocrine
alterations such as decreased plasma growth hormone
concentration [21] and increased plasma corticosterone
concentration [23] can contribute to the development of
obesity. Glucose homeostasis derangements seem to be
more severe in mice than in rats; mice can develop dia-
betes [29,30], and rats an insulin-resistant state without
hyperglycemia [31]. Since the description of this animal
model in the late seventies, it has been extensively used
to investigate the pathophysiology of obesity and its po-
tential therapeutic approaches.
On the other hand, MSG treatment of spontaneously

hypertensive rats (SHR) could approach a classical ani-
mal model of the metabolic syndrome, by association of
obesity with arterial hypertension, but there are reports
that high blood pressure (BP) levels are attenuated in
these animals [32]. Moreover, this animal model was not
fully characterized as to the development and mainten-
ance of the metabolic syndrome features over time. We
hypothesized that the induction of obesity in hyperten-
sive rats would determine a cluster of dysfunctions
enough to characterize the metabolic syndrome, as it is
observed in humans, pointing out reduced expression of
GLUT4 in insulin-sensitive tissues as a marker of insulin
resistance. Thus, the aim of this study was to
characterize the metabolic syndrome in MSG-treated
spontaneously hypertensive rats (SHR), focusing on
GLUT4 protein expression and insulin resistance devel-
opment, as well as on inflammatory cytokines and BP
levels over time.

Methods
All animals were bred and kept under standard labora-
tory animal house conditions at the Animal Production
and Research Unit of the Center for Scientific and
Technological Development of Fundação Estadual de
Produção e Pesquisa em Saúde do Rio Grande do Sul,

Brazil. The study was approved by the Research Ethics
Committee of Instituto de Cardiologia do RS, protocol
#UP:4330. Animals received standard rat food and water
ad libitum, and were maintained in controlled 12-h
light/12-h dark cycle (6AM/6PM) and 20-25°C
temperature conditions.
Neonate male SHR (n = 18) were submitted to sub-

cutaneous administration of monosodium glutamate
(MSG, SigmaW) diluted in saline solution (0.9% NaCl),
5mg/g/day, for 9 days (MetS), starting at day one of life.
We also evaluated 18 SHR (group H) and 18 Wistar-
Kyoto rats (group C) treated with saline solution sub-
cutaneously for the same period. At 21 days of life, the
animals were weaned and placed into plastic boxes, 4
animals per box.
General characteristics, insulin sensitivity (insulin

tolerance test) and blood pressure (analyzed on a beat-
to-beat basis) were evaluated at 3, 6 and 9 months. The
rats were euthanized with ketamine (160 mg/kg body
weight) and xylazine (10 mg/kg body weight). Tissues
(heart, epididymal white adipose tissue and gastrocne-
mius muscle) were removed for GLUT4 analyses (West-
ern blotting), and blood was collected for lipid profile, C
reactive protein (CRP), interleukin 6 (IL-6), tumor necro-
sis factor-α (TNF-α) and adiponectin analysis at the end
of each period of evaluation, 6 animals of each group/
period.

General characteristics evaluation
The animals were weighed and their naso-anal lengths
were measured in dorsal decubitus on the day they were
euthanized. The Lee Index was calculated according to
the formula: (weight 1/3/naso anal length) [30].

Insulin tolerance test
The insulin tolerance test was performed as previously
described [31] using human insulin (Humulin, Eli Lilly,
São Paulo, Brasil). After 3 h of food restriction, animals
were anesthetized with ketamine (160 mg/kg body
weight) and xylazine (10 mg/kg body weight), and
0.75U/kg body-weight of regular insulin was injected via
the penile vein. Glycemia was measured by Accu-check
strips system (Roche, Mannheim, Germany) before insu-
lin injection and 4, 8, 12, 16 and 20 minutes after. The
glucose decay constant rate (kITT) was calculated as
described [31].

Blood pressure recording
The animals were anesthetized with ketamine (160 mg/kg
body weight) and xylazine (10 mg/kg body weight) to
place a polyethylene catheter (PE-10) inside the femoral
artery. The cannula was filled with saline solution and
positioned inside the abdominal aorta, through the left
femoral artery, to record BP. The next day the arterial
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cannula was connected to a pressure transducer, linked
by a channel selector to the CODAS analog-digital board
in a microcomputer. The data obtained were recorded.
For each pulse wave the same program calculated values
for peak (systole), valley (diastole) and period (between
one peak and the next), generating a spreadsheet with
these values, which was analyzed in a Microsoft Excel
2007 software. Twenty-minute basal recordings were
obtained to evaluate systolic and diastolic BP and heart
rate, in the conscious animal.

Tissues harvesting and euthanasia
One day after the BP recording, the animals were
anesthetized as described. Gastrocnemius muscle and
epididymal white adipose tissue were removed, and then
the animals were submitted to a thoracotomy and cardiac
puncture to draw blood, and further heart harvesting,
causing their death. Serum was separated by centrifuga-
tion and frozen at −80°C. Tissues were weighed and
immediately frozen for further analysis.

Western-blotting for GLUT4 protein
The tissue samples were homogenized according to
Machado et al. [29]. The gastrocnemius, heart and white
adipose tissue were homogenized in buffer (10mM Tris–
HCl, 1 mM EDTA and 250 mM saccarose, pH 7.4),
using a Polytron homogenizer (Marconi, Piracicaba, Bra-
zil) at 20,000 rpm for 30 seconds. Gastrocnemius and
heart were homogenized in the same buffer (1:6 weight:
volume), and centrifuged at 1,000 g for 10 min. The
supernatant was saved; the pellet was resuspended in 1/3
of the initial volume, and centrifuged again at 1,000 g
for 10 min. The two supernatant solutions were mixed
and submitted to centrifugation at 150,000 g for 75 min.
The final pellet was resuspended in 1 ml of buffer as a
total membrane fraction. The white adipose tissue was
homogenized in the same buffer (1:4 weight:volume),
and centrifuged at 2,000 g for 15 minutes. The fat glo-
bules were discarded, and the volume of the infranatant,
a fat-free extract fraction, containing the microssomal
and the plasma membrane proteins (corresponding to
total membrane fraction), was saved for further analysis.
All procedures were carried out at 4 °C.
GLUT4 expression was determined by Western Blot.

Briefly, The total protein concentration of the samples
was determined by the Bradford method [33]. Equal
quantities of total proteins (50 μg) were solubilized in
Laemmli buffer, electrophorezed in sodium dodecyl sul-
fate/polyacrylamide gel electrophoresis (SDS-PAGE –
10%), and transferred to the nitrocellulose membrane
(GE Healthcare, Amersham Biosciences, UK). After
transfer, the membranes were blocked with non fat dried
milk, and subjected to immunodetection using anti-
GLUT4 antibody (Chemicon, Billerica, CA, USA) at a

dilution of 1:3,000, 37°C for 3 hours. The immunoblots
were revealed and visualized by enhanced chemilumines-
cence using ECL kit (GE Healthcare), and analyzed by
optical densitometry using Image Quant TL software
(GE Healthcare, New York, USA). For white adipose
tissue analysis, the membranes were reprobed with anti-
β-actin antibody (Monoclonal anti-β-actin antibody
AC-74, A2228, Sigma-Aldrich), and GLUT4 values
were normalized by the respective β-actin value. For
heart and gastrocnemius analysis, densitometric analysis
of total protein in the lanes was performed, between 35
and 130 kDa of range (based on Page Ruler Prestained
Protein LadderW, Thermo Scientific, USA), in Ponceau
stained membranes. These values were used to normalize
the respective GLUT4 values [34]. The final results were
expressed as arbitrary units (AU).

Lipid profile and inflammatory markers
Total cholesterol, HDL-cholesterol and triglycerides
concentrations were analyzed using commercial kits
(LabtestW, Lagoa Santa, MG, Brazil).
Immunodetection of inflammatory markers and adipo-

nectin were analyzed by the immunoenzymatic method
(ELISA) according to the respective manufacturer’s
instructions: CRP (USA; EbiosciencesW, San Diego, CA
USA), TNF-α (CellsciencesW, Canton, MA, USA), IL-6
(CellsciencesW, Canton, MA, USA) and adiponectin
(ChemiconW, Billerica, MA). The reading was obtained
by spectrophotometry (SpectramaxW, Molecular Devices
Corporation, Sunnyvale, CA, USA) at 450nm and com-
pared to a standard curve obtained with known concen-
trations of recombinant mediators. The minimum values
of detection, intra-assay variability coefficients and inter-
assay variability coefficients according to the manufac-
turer were, respectively: CRP: 2.5 pg/mL, <8% and <7%;
TNF-α: 25 pg/mL, <10% and <12%; IL-6: 2 pg/mL; <10%
and <12%; adiponectin: 15.6 pg/mL, <10% and <10%.

Statistical analysis
The results are presented as mean± standard deviation
and compared by two-way analysis of variance
(ANOVA), followed by the Bonferroni´s post-hoc test.
The level of significance was 5% for all tests performed.
All analyses were performed using the SPSS for Win-
dows, version 17.0.

Results
General characteristics of the animals are shown in
Table 1. Animals in the MetS group weighed less than C
and H (p<0.001 for both comparisons) at 6 and 9
months of age. The heart and gastrocnemius mass were
reduced in the MetS animals (p<0.001 for both compari-
sons). However, the weight of epididymal white fat was
greater in the MetS group vs. C and H (p<0.001 for both
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comparisons) at all ages studied, and consequently, the
Lee index was also higher in all ages (p<0.001), revealing
the obesity of MetS rats. MetS rats had progressively
increased triglycerides with aging (6 mo: p<0.001 MetS
vs. C and p = 0.002 MetS vs. H; 9 mo: p<0.001 for MetS
vs. C and H), as well as reduced HDL-cholesterol (6 mo:
p<0.001 MetS vs. C and p = 0.014 MetS vs. H; 9 mo:
p = 0.004 MetS vs. C and p = 0.009 MetS vs. H), with a
more marked difference among groups at 9 months of
age. Interestingly, H animals with 9 months of age also
had increased triglyceride levels when compared with C
(p<0.001). Total cholesterol of all groups was higher at 6
and 9 months when compared to 3 months of age, how-
ever, there were no differences among groups within
each age.

Mean BP was similarly higher in H and MetS groups
at all ages, as compared to the C group (Figure 1). There
were no changes in BP over time in the groups studied.
Figure 2 shows the results of the insulin tolerance test

(Panel A) and glycemia (Panel B) after 8 hours of food
deprivation. Animals from the MetS group were insulin-
resistant at all ages, as compared to respective C and H
groups although insulin resistance did not increase over
time. Furthermore, H animals become insulin-resistant
at 6 and 9 months of age, as compared to C (no differ-
ence between C and H was observed at 3 months of
age). Glycemia was higher in H and MetS groups at all
ages as compared to the C group (Figure 2, Panel B).
Figure 3 shows the results of the cytokines (TNF-alpha

and IL-6), as well as CRP and adiponectin. IL-6 (Panel

Table 1 General characteristics of the animals studied at 3, 6 and 9 months of age

3 months 6 months 9 months

C H MetS C H MetS C H MetS

Body weight (g) 262 ± 29 278 ± 9 254 ± 18 349 ±13 377± 11 291 ± 26 a 355 ± 16 363 ± 11 305 ± 6 a

Lee index 0.22 ± 0.1 0.26 ± 0.1 0.33 ± 0.1 a 0.23 ± 0.1 0.27 ± 0.1 0.33 ± 0.1 a 0.26 ± 0.1 0.29 ± 0.1 0.32 ± 0,1 a

Heart weight (g) 0.91 ± 0.21 0.95 ± 0.11 0.80 ± 0.10 a 1.12 ± 0.25 1.22 ± 0.18 0.90 ± 0.13 a 1.22 ± 0.21 1.26 ± 0.19 0.80 ± 0.12 a

Gastrocnemius weight (g) 1.39 ± 0.23 1.41 ± 0.30 1.10 ± 0.21 1.47 ± 0.21 1.59 ± 0.19 1.28 ± 0.14 1.61 ± 0.22 1.70 ± 0.26 1.31 ± 0.18 a

WAT weight (g) 0.80 ± 0.16 0.88 ± 0.18 1.20 ± 0.17 a 1.09 ± 0.18 1.19 ± 0. 21 1.42 ± 0.22 a 1.26 ± 0.21 1.29 ± 0.31 1.66 ± 0.36 a

Total cholesterol (mg/dl) 57 ± 12 56 ± 7 56 ± 7 70± 21 78 ± 21 76 ± 13 83 ± 7 77 ± 21 76 ± 13

HDL-c (mg/dl) 54 ± 4 54 ± 2 54 ± 2 55± 7 51± 3 37± 6 a 53 ± 9 50 ± 7 39 ± 5 a

Triglycerides (mg/dl) 49 ± 13 49 ± 15 49 ± 15 56 ± 6 58± 18 104 ± 19 a 66 ± 11 170 ± 41 a 444 ± 64 a

C: Wistar-Kyoto rats that did not receive any treatment; H: spontaneously hypertensive rats that did not receive any treatment; MetS: spontaneously hypertensive
rats that received MSG during the neonatal period. WAT: white adipose tissue; HDL-c: high density lipoprotein cholesterol. The table shows only differences
among groups at the same time of evaluation, not inside groups throughout time. Differences among groups over time are described in the results section. a

p<0.05 vs. C. Two-way ANOVA followed by Bonferroni’s post hoc test.

Figure 1 Mean blood pressure of the animals studied, at 3, 6 and 9 months of age. C: Wistar-Kyoto rats that did not receive any treatment;
H: spontaneously hypertensive rats that did not receive any treatment; MetS: spontaneously hypertensive rats that received MSG during the
neonatal period. n = 6 in all groups. Two-way analysis of variance (ANOVA): group (p<0.001), time (p = 0.431) and interaction (p = 0.016), followed
by the Bonferroni’s post hoc test: * p<0.05, ** p<0.01 and *** p<0.001 vs. C at the same time.
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A) was elevated in MetS animals at 6 and 9 months of
age, as compared to both C and H animals. A curious
result was observed at 3 month of age, when IL-6 was
lower in MetS and H animals, as compared do C. CRP
(Panel B) and TNF-alpha (Panel C) were also higher in
MetS animals in all ages, as compared do C and H ani-
mals; indeed, these cytokines were elevated in H, as
compared to C at all ages, except at 9 months for TNF-
alpha. Finally, adiponectin (Panel D) was altered only at
9 months of age, when it was reduced in MetS animals,
as compared to both C and H animals.
GLUT4 expression (Figure 4) was lower in heart

(panel A), gastrocnemius (Panel B) and white adipose
tissue (Panel C) at all ages in the MetS group, as com-
pared to C and H. The reduction of GLUT4 in the heart
of MetS rats was 54%, 50% and 57% at 3, 6 and 9
months of age, respectively, as compared to C group. In
the gastrocnemius of Mets animals, GLUT4 was lower
37%, 56% and 50% as compared to C group at 3, 6 and 9
months, respectively. Finally, the GLUT4 in the adipose
tissue MetS group showed a reduction of 69%, 61% and
69% at 3, 6 and 9 months of age, respectively.

Discussion
This study showed a reduction of GLUT4 protein con-
tent of insulin-sensitive tissues in an animal model of
metabolic syndrome, a fundamental mechanism to im-
pair glucose uptake and glucose homeostasis. This regu-
lation, not yet seen, began at 3 months of age, and was
not reverted as time passed. Furthermore, this glucose
transporter modulation was accompanied by inflamma-
tion, insulin resistance and hypertension, also here
described in the same animal model.

The use of MSG in genetically hypertensive rats led
these animals to progressively increase body adiposity
and hypertriglyceridemia; besides, developing and main-
taining insulin resistance, low HDL-cholesterol, high
blood pressure levels, and inflammation throughout the
period studied. Other animal models used showed that
high-fat-fed SHRs did not show changes in plasma con-
centrations of total cholesterol and triglycerides, al-
though plasma concentrations of free fatty acids were
higher as compared to normal diet-fed SHRs [35]. Mice
fed on high-carbohydrate and high-fat diet (cafeteria
diet) had increased body weight, abdominal fat depos-
ition, hyperinsulinaemia, hyperglycaemia and hyperlepti-
naemia, but no hypertension [36,37]. Although these are
examples of models of metabolic syndrome [38], our
study clearly shows the possibility of reproducing the
whole metabolic syndrome in laboratory animals in a
low-cost and easily-obtained model.
The increased Lee index and epididymal fat mass

observed in MetS animals confirmed their obese condi-
tion, as it has been described in MSG-treated normoten-
sive rats and mice [32,39]. MSG-treated animals,
compared to their controls, may have a lower absolute
weight, as we also found in MetS, which has been pro-
posed to be a result of decreasing growth hormone (GH)
secretion [40]. Accordingly, lean mass may be decreased
in MSG animals [41], a feature that we also observed in
SHR treated with MSG, which presented lower heart
and skeletal muscle mass. In addition to low GH levels,
high corticosterone levels [42] were also described in
MSG animals, and both hormonal modulations contrib-
ute to decrease synthesis and increase catabolism of pro-
teins, thus diminishing muscle mass [43]. Furthermore,

Figure 2 Insulin sensitivity and glycemia of the animals studied, at 3, 6 and 9 months of age. C: Wistar-Kyoto rats that did not receive any
treatment; H: spontaneously hypertensive rats that did not receive any treatment; MetS: spontaneously hypertensive rats that received MSG
during the neonatal period. n = 6 in all groups. Painel A: Insulin sensitivity evaluated by the insulin tolerance test (ITT). Two-way analysis of
variance (ANOVA): group (p<0.001), time (p = 0.062) and interaction (p = 0.022), followed by the Bonferroni’s post hoc test: * p<0.05 and ***
p<0.001 vs. C; † p<0.05 vs. H at the same time. Painel B: Glycemia after 8 hours of food deprivation. Two-way analysis of variance (ANOVA): group
(p = 0.001), time (p = 0.021) and interaction (p = 0.041), followed by the Bonferroni’s post hoc test: * p<0.05 vs. C at the same time.
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together with decreasing sympathetic activity [28] this
hormonal imbalance contributes to conserve energy, ac-
cumulating fat. It is important to highlight that MSG
should be administered in the neonatal period to deter-
mine all the derangements related to obesity described,
as use in later periods of life [44] would not result in the
characteristic hypothalamic lesions [20,21], because of
the protective effects of the blood–brain barrier [22].
In metabolic syndrome, however, beyond obesity,

hypertension is a key feature, which is not present when
MSG is used in mice [30] and Wistar rats [45], but was
effectively shown in the present study treating SHR.
Other authors described attenuation of high BP levels in
MSG-treated SHR [32,39], a finding that we did not ob-
serve, probably because the cardiovascular evaluation
method we used is more appropriate (direct BP

measurement). The studies mentioned found controver-
sial results, possibly due to the fact that all measured
mean BP using tail plethysmography. Furthermore, vari-
able protocols of neonatal MSG treatment have been
used, probably altering severity and/or time of induction
of the alterations. It is well-known that, in SHR, BP rises
progressively over lifetime, while in our study, the MSG-
treated SHR had higher BP than the normotensive rats
at all ages studied, but remained stable, not increasing
over time. This fact might be related to low sympathetic
activity described in MSG-treated animals [28].
Fulfilling the picture of metabolic syndrome, MSG-

treated SHR presented obesity and high BP levels asso-
ciated with insulin resistance, hypertriglyceridemia and
reduced HDL cholesterol levels with normal total chol-
esterol levels. Spontaneously hypertensive rats are

Figure 3 Inflammatory markers of the animals studied, at 3, 6 and 9 months of age. C: Wistar-Kyoto rats that did not receive any
treatment; H: spontaneously hypertensive rats that did not receive any treatment; MetS: spontaneously hypertensive rats that received MSG
during the neonatal period. n = 5 in all groups. Two-way analysis of variance (ANOVA) Panel A: group (p<0.001), time (p = 0.001) and interaction
(p<0.001); Panel B: group, time and interaction (p<0.001); Panel C: group (p<0.001), time (p<0.001) and interaction (p = 0.035) and Panel D: group,
time and interaction (p<0.001), followed by the Bonferroni’s post hoc test: * p<0.05 and *** p<0.001 vs. C; †† p<0.01 and ††† p<0.001 vs. H at
same time. The time course changes inside groups are also showed.
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typically insulin resistant [12], which we also observed in
the MSG-treated SHR. However, SHR are not obese, and
their visceral fat content is similar to that of normoten-
sive Wistar rats [46], which was strongly changed by
using MSG. Insulin resistance in SHR is partially
ascribed to the characteristic sympathetic hyperactivity
they present, which promotes reduced activity of the in-
sulin signaling cascade and, consequently, can reduce
GLUT4 translocation and/or expression [47]. Further-
more, norepinephrine inhibits insulin-mediated glucose
uptake in muscle [48] and blocks insulin inhibitory ac-
tion on liver glucose production [49], all these effects
contributing to impair glycemic homeostasis. The char-
acteristic lipid profile of insulin-resistant states was
observed from 6 months of age and beyond for the
MSG-treated SHR, as observed for non-MSG treated
SHR [50], but not for Wistar-Kyoto rats. Based on these
facts, we can understand that increased sympathetic ac-
tivity may induce or worsen installed insulin resistance,
closing the circle which perpetuates the existence of
both insulin resistance and high BP levels.
Beyond its classic metabolic actions, insulin is also anti-

inflammatory, decreasing activity of pro-inflammatory
cytokines, such as TNF-α and IL-6, as well as repressing
the transcription factor nuclear factor кB (NFкB) [51].
In MSG-treated mice, Furuya and collaborators [52]
demonstrated that hypertrophyc adipocytes triggered
local inflammatory activity with increased macrophage
infiltration and TNF-α and IL-6 expression, depicting
high plasma concentration of the cytokines. This was
accompanied by decreased GLUT4 content in white
adipose tissue and reversed by atorvastatin treatment
[52]. We showed that inflammation is exacerbated in
MSG-treated SHR from 3 months of age on, along with
GLUT4 reduction in all insulin-sensitive tissues. TNF-α

rise, especially, can reduce the expression of IRS-1 and
GLUT4, as well as of the hormone-sensitive lipase, adi-
ponectin and PPARγ [53]. All these processes are
known to contribute to lipolysis and insulin resistance,
and were also observed in these animals since the age
of 3 months. Adiponectin reduction in MSG-treated
SHR at the age of 9 months is probably due to the ex-
acerbation of hypertriglyceridemia at this age, which acts
as an independent causal factor for hypoadiponectinemia
[54]. Besides, hypoadiponectinemia probably occurs only
at the age of 9 months because of its known relationship
with the severity of obesity [55].
Insulin resistance of MSG-treated SHR is in accord-

ance with the reduction of GLUT4 content in all
insulin-sensitive tissues analyzed, corroborating previous
data in MSG-treated mice in all cell fractions of adipose
tissue with no change in the relative GLUT4 transloca-
tion to the plasma membrane [30] and also in the same
tissue in humans [56]. Moreover, low GLUT4 protein
content in skeletal muscle and heart was also shown in
MSG-treated mice [18]. In MSG-treated SHR, GLUT4
on insulin-sensitive tissues had not been reported yet,
especially its time-course changes through aging, as here
reported.
Skeletal and heart GLUT4 protein were reduced

from the age of 3 months and did not worsen over
time, following the stable profile of insulin resistance
in MSG-treated SHR. It is known that in the SHR,
plasma membrane myocyte GLUT4 increases with age
(12 weeks), but at 20 weeks, GLUT4 contents tends to
reach the initial levels (8 weeks) [57]. Moreover, reduced
insulin-induced GLUT4 translocation [47] and/or total
content was also showed before [57]. Pharmacological
treatment of arterial hypertension with captopril can
virtually re-establish the glucose transporter contents

Figure 4 Total GLUT4 protein in heart (A), gastrocnemius muscle (B) and epididymal white adipose tissue (C) from the animals studied.
C: Wistar-Kyoto rats that did not receive any treatment; H: spontaneously hypertensive rats that did not receive any treatment; MetS:
spontaneously hypertensive rats that received MSG during the neonatal period. On the top, representative images of GLUT4 and respective
loading controls. Loading controls are β-actin for white adipose tissue, and total proteins of 35 to 130 kDa range of the Ponceau stained
membrane for heart and gastrocnemius, as described in Methods. On the bottom, the graphs show means ± SEM of n = 5 animals. Two-way
analysis of variance (ANOVA) Panel A: group, time and interaction (p<0.001); Panel B: group (p = 0.006), time (p<0.001) and interaction (p = 0.003);
Panel C: group, time and interaction (p<0.001), followed by the Bonferroni’s post hoc test: *** p<0.001 vs. C; † p<0.05 and ††† p<0.001 vs. H at
same time. The time course changes inside groups are also showed.

Leguisamo et al. Cardiovascular Diabetology 2012, 11:100 Page 7 of 10
http://www.cardiab.com/content/11/1/100



[57]. On the other hand, investigations have shown that
GLUT4 translocation in skeletal muscle and heart is sti-
mulated by bradykinin [58], which enhances insulin-
induced phosphorylation of insulin receptors and insulin-
stimulated association of IRS-1 and phosphatidylinositol-
3-kinase in skeletal muscle of aged rats [59], all of which
are essential for insulin-mediated GLUT4 translocation
and glucose transport. Both cases demonstrate that the
amount of GLUT4 is related to blood pressure levels.
Anyhow, it is known that the behavior of this transporter
in the skeletal muscle does not always reflect what hap-
pens in the white adipose tissue [60], and, indeed, in this
tissue, we find a progressive reduction of its content in
MSG-treated SHR, especially at the age of 9 months.
In the heart, in turn, it is known that insulin resistance

together with the excess of free fatty acids – as we find
in MSG-treated SHR – are responsible for contractility
dysfunction [61,62]. Since the muscle contraction also
induces GLUT4 translocation to the plasma membrane,
contractility dysfunction is directly related to reduced
plasma membrane GLUT4 content [63]. Furthermore,
the excess of free fatty acids alone can interfere in glu-
cose transport, since it reduces GLUT4 expression in
the heart, but not that of the free fatty acid transporter
[64]. In rats with insulin resistance induced by a
fructose-rich diet, cardiomyocytes present low glucose
input in response to ischemia, a consequence of GLUT4
translocation reduction [65]. We found a reduction of
GLUT4 content in heart of MSG-treated SHR at the age
of 3, 6 and 9 months, which can be explained by the hy-
pothesis that the reduction of this transporter in the
heart occurs when obesity and insulin resistance are
established [41]. The normotensive and hypertensive
control groups did not present differences in the GLUT4
content in the heart, at the age of 6 months [12]. In the
MSG-treated SHR, time-course of changes of insulin-
sensitive GLUT4 protein content had not yet been
described in the literature.

Conclusions
The present study depicts in obese hypertensive rats a
reduction in GLUT4 expression, accompanied by
whole-body insulin resistance, and increased plasma
concentration of inflammatory markers. These findings
characterize an animal model of metabolic syndrome,
as it has been observed in humans. In general, the
alterations have persisted unaltered during the aging
process, from 3 to 9 months of age. Thus, the MSG-
treated SHR can be used as an experimental model to in-
vestigate pharmacological approaches for the metabolic
syndrome, as well as its interaction with other diseases.
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